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SUMMARY

This is the second report on the development of a highly accurate interpolation method, which is called
cubic interpolation with volume/area (CIVA) co-ordinates, for mesh-free flow simulations. In this paper,
the method of determining the c-parameter of CIVA using a constant curvature condition is first
considered for the two- and three-dimensional cases. A computation of a three-dimensional passive scalar
advection problem is performed for accuracy verification and for comparison with widely used methods.
Then, an application algorithm of the CIVA method respecting incompressible fluid simulation is
presented. As the incompressible condition based on Lagrangian approaches causes problems, in this
paper we consider the condition based on the conventional Eulerian approach. The CIVA-based
incompressible flow simulation algorithm enables a highly accurate simulation of many kinds of problems
that have complicated geometries and involve complicated phenomena. To confirm the facts, numerical
analyzes are executed for some benchmark problems, namely flow in a square cavity, free surface sloshing
and moving boundary problems in complex geometries. The results show that the method achieves high
accuracy and has high flexibility, even for the flows involving high Reynolds number, complicated
geometries, moving boundaries and free surfaces. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: CIP; CIVA; computational fluid dynamics; incompressible fluid; mesh-free method;
particle method

1. INTRODUCTION

In computational fluid dynamics (CFD), numerical accuracy and stability are the most
important factors because they can have far-reaching effects on the results. However, it is
difficult to be consistent with regard to these two factors. Accordingly, researchers have
developed several kinds of consistent methods, for example, the high-order schemes (e.g.
UTOPIA and K-K) in the finite difference method (FDM) and high-order elements in the
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finite element method (FEM). However, these methods are mesh-based and are not applicable
to mesh-free approaches. Mesh-free approaches have been attracting the attention of fluid
researchers because they do not require mesh generation, which generally requires a lot of time
and care. The gridless method and the particle method are popular in CFD, but have
drawbacks in that improvement of numerical accuracy and the application to high-Reynolds
number flow are difficult.

Therefore, we have developed a new, highly accurate and stable interpolation algorithm,
applicable to the mesh-free method [1,2]. To achieve high accuracy and stability, we extend the
cubic-interpolated pseudo-particle (CIP) method [3,4], which in its original form executes
interpolation with a rectangle or a rectangular parallelepiped mesh, for a triangle/tetrahedron
and the local (natural) co-ordinates. In the FEM field, the local co-ordinates are frequently
called the volume co-ordinates for three dimensions and the area co-ordinates for two
dimensions. The new interpolation method, which we call cubic interpolation with volume/area
(CIVA) co-ordinates, makes it possible to achieve highly accurate interpolation based on a
tetrahedron/triangle in the case of the mesh-free method. From the computational results, it
was confirmed that the CIVA method improved the accuracy of the gridless method and
particle method [1]. We use the CIVA–particle method in this study, as it is flexible in the
treatment of moving calculation points. By virtue of its flexibility, the CIVA–particle method
makes possible the application of the augmented Lagrangian–Eulerian (ALE) [5] method and
provides the following advantages [1]:

(a) It is easy to handle the inlet and outlet boundaries.
(b) The sparseness and denseness of particle distribution can be controlled easily (or

adaptively).
(c) Fixed particles around boundaries make the accuracy better. (The full-Lagrangian al-

gorithm in which the computing points always move according to the flow inevitably
cause disturbance, i.e. the numerical viscosity.)

These points become serious problems in the conventional particle (full-Lagrangian) methods
because of the difficulty of dealing effectively with them using those methods.

The CIVA method has a control parameter c and we must provide in advance the means of
determining the value in order to close the system. In the previous study, we used the
c-parameter given in References [6,7]. However, in this study we will first consider a
determination method for the c-parameter with constant curvature conditions in two and three
dimensions and investigate the validity in the case of a three-dimensional problem. Then, we
apply the CIVA–particle method to an incompressible flow simulation. For the incompressible
flow simulation with the particle method, the most difficult point is how to handle the
incompressible condition (mass conservation law) derived from Lagrangian approaches. The
full-Lagrangian incompressible flow simulation methods, such as the incompressible smoothed
particle hydrodynamics (SPH) [8,9] method and the moving particle semi-implicit (MPS)
[10,11] method, have been presented but they are subject to problems that will be discussed
below. To avoid the problems, we treat the incompressible condition using the conventional
Eulerian method. As the CIVA method can achieve high-order interpolation based on a
triangle or a tetrahedron, Voronoi diagram and Delaunay triangulation can be utilized for
automatic construction of mesh for the incompressible condition. Reflecting the fact that
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Voronoi diagram and Delaunay triangulation are currently prominent topics in computational
geometry, some application software programs for two and three dimensions are freely
available. Some incompressible fluid simulation methods based on the Voronoi polygon have
been developed (e.g. see Reference [12]), but the methods generally use a collocated grid
arrangement, which defines both velocity and pressure at a point, so that the pressure field is
prone to oscillation, especially in high-Reynolds number (Re) flow. To solve the problem, the
Delaunay triangle is used instead of the Voronoi polygon as a control volume in this study.
Then, velocity is defined at the vertex points of the triangle and pressure at the barycenter.
This arrangement is called P1P0-type in FEM and is known to prevent the oscillation of
pressure field. This method is not a completely mesh-free method, as it generates a global mesh
for the Poisson equation. However, we can consider it to be a pseudo-mesh-free method
because the user is not conscious of mesh generation. In other words, this approach is
considered to be a method for improving accuracy of methods based on an unstructured mesh
system.

Finally, to confirm the accuracy and flexibility of our incompressible method, numerical
analyses are executed for some benchmark problems, namely flow in a square cavity, free
surface sloshing and moving boundary problems in complex geometries.

2. THE CIVA ALGORITHM

In order to evaluate the advection or convection phenomena in this study, the CIVA–particle
method based on the Lagrangian rearrangement interpolation (LRI) algorithm [1] is applied.
The LRI algorithm is considered to be a mesh-free version of the ALE method. In fact, we can
confirm that the LRI algorithm is equivalent to the ALE method, where the convection flux
in the rezoning phase is evaluated by the upwind method (see Appendix A). However, the LRI
method is more flexible than the ALE method because it does not need any mesh-based
discretization.

2.1. Determination of the c-parameter by constant cur6ature conditions

The CIVA method has a control parameter c, whose value it is necessary to provide in advance
in order to close the system. Thus, we will consider in this section the determination method
of the c-parameter of CIVA in two and three dimensions.

In two dimensions, scalar profile in a triangle is assumed to be the following third-order
polynomial, using area co-ordinates (L1, L2, L3):

f0 (L1, L2, L3)= %
3

i=1

aiLi+ %
3

j,k=1 ( j"k)

bjk [Lj
2Lk+cL1L2L3] (1)

where c is the control parameter. The unknown coefficients of Equation (1), ai, bjk, can be
determined independently of c and directly without solving simultaneous linear equations

ai= fi, bjk= fj− fk+ (xk−xj)f j
x+ (yk−yj)f j

y (2)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424



N. TANAKA406

We must provide in advance the means of determining the value of c because the term L1L2L3

in Equation (1) and the first-order spatial differential values become zero at every vertex of a
triangle; therefore, c cannot be determined from the known information of the vertices. This
set-up of c is an interesting problem and a subject for further investigation [2]. The use of
another calculation point and the application of least-squares approximation are among the
candidate approaches for accomplishing this. Here, we apply the constant curvature condition
(CCC in this paper) [6,7] to the set-up. The condition means that the cubic function expressed
by Equation (1) gives arbitrary curvatures in all areas within a triangle, i.e. the parameter c
should be determined to satisfy

S3
c³S2 (3)

where S3
c is the function space spanned by the (incomplete) cubic polynomial (1) and S2 is the

function space spanned by the complete second-order polynomial that is expressed, using area
co-ordinates, by

g(L1, L2, L3)= %
3

i=1

aiLi+ %
3

j,k=1 (k\ j)

bjkLjLk (4)

To make the derivatives at the vertices calculated from Equation (1) equal to those calculated
from Equation (4), the following relations should be established:

f i
x=gi

x, f i
y=gi

y, i=1, 2, 3 (5)

Substituting relations (5) into Equation (1) and rearrangement by bjk results in

f(L1, L2, L3)= %
3

i=1

aiLi+b12L1L2(L1+L2+2cL3)+b23L2L3(2cL1+L2+L3)

+b13L1L3(L1+2cL2+L3) (6)

By taking into consideration the characteristic of area co-ordinates, L1+L2+L3=1, we can
find that iff c is equal to 1

2, the cubic polynomial (1) recovers the complete second-order
polynomial (4) and satisfies the CCC of Equation (3).

In the three-dimensional case, the CIVA method utilizes a tetrahedron for interpolation and
the volume co-ordinates. The following three-dimensional cubic polynomial using volume
co-ordinates (L1, L2, L3, L4) in a tetrahedron, whose polynomial is in more general form than
that in previous works [1], can be assumed in this paper

f0 (L1, L2, L3, L4)= %
4

i=1

aiLi+ %
4

j,k=1 ( j"k)

bjk
�

Lj
2Lk+ %

4

l=1

cl

L1L2L3L4

Ll

n
(7)
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where the coefficients can be calculated independently of the parameters cl without solving the
linear system as follows:

ai= fi, bjk= fj− fk+ (xk−xj)f j
x+ (yk−yj)f j

y+ (zk−zj)f j
z (8)

We have to specify cl in advance because the terms L1L2L3L4/Ll (l=1, 2, 3, 4) and the
first-order spatial differential values become zero at every vertex of the tetrahedron and their
coefficients cannot be determined from the known information at the vertices. For example,
the CCC can be useful for determining the parameter cl.

The complete second-order polynomial using volume co-ordinates is given by

g(L1, L2, L3, L4)= %
4

i=1

aiLi+ %
4

j,k=1 ( j\k)

bjkLjLk (9)

By the same consideration as in two dimensions, it is necessary and sufficient for satisfying the
CCC that Equation (7) be transformed into

f(L1, L2, L3, L4)= %
4

i=1

aiLi+
1
2

%
4

j,k=1 ( j"k)

bjkLjLk(1+Lj−Lk) (10)

Function (10) is the interpolating function of CIVA with the CCC for three dimensions, and
all the coefficients can be calculated from Equations (8). Therefore, the CCC makes it possible
for a scalar value and the spatial derivatives in a tetrahedron to be interpolated with the only
known information (the Cartesian co-ordinate values, the scalar values and the spatial
derivatives) at the vertices from Equations (8) and (10).

2.2. Numerical analysis of a three-dimensional ad6ection problem

To check the validity and accuracy of the CIVA method with the above-mentioned c-
parameter determination of CCC (interpolating function (10)), a three-dimensional passive
scalar advection problem shown in detail in Figure 1 is considered. (The two-dimensional
verification has already been done in Reference [1].) This problem was used as a benchmark
problem when Kawamoto et al. [13] checked the accuracy of the high-order finite difference
schemes. The governing equation for advection of scalar f by flow u is

(f
(t

+ (u·9)f=0 (11)

The flow circulates uniformly in the region as angular velocity of v=2p (rad s−1). The
calculation is performed over 1000 steps, with a time step of 0.001 s (1 rotation) on the
uniformly fixed points of x×y×z=30×30×30.
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Figure 1. Benchmark problem of three-dimensional passive scalar advection.

Figure 2. Choice of a tetrahedron on the upwind side.

We considered two approaches for constructing a tetrahedron on the upwind side, as shown
in Figure 2. The comparison of peak values of the scalar is shown in Table I, which includes
the results obtained with other methods given in Reference [13]. The table indicates that the
results obtained with the two approaches for constructing a tetrahedron are virtually the same.
We can confirm that CIVA with CCC can achieve the accuracy between the third-order
upwind scheme and the fourth-order central difference scheme.

Table I. Maximum value of scalar after 1 rotation.

u=0° u=45°

0.664 0.577QUICK [13]
0.5320.631Third-order upwind [13]

0.928 0.929Fourth-order central [13]

0.753CIVA(A) 0.817
0.825 0.722CIVA(B)
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3. INCOMPRESSIBLE FLOW SIMULATION

3.1. Problems of the incompressible condition of the particle method

In view of the computing point movement, the governing equations are as follows:

dx
dt

=u (12)

dr

dt
=0 (13)

du
dt

= −9p+
1

Re
Du (14)

For incompressible flow simulation with the particle method, the most difficult point is how to
handle the mass conservation law. The full-Lagrangian approaches, such as smoothed particle
hydrodynamics (SPH) and moving particle semi-implicit (MPS), use a predictor–corrector
method (projection method), such as the marker and cell (MAC) or simplified MAC (SMAC)
methods, to handle the condition. In the MAC method, the following Poisson equation of
pressure is solved:

92pi
n+1= fex (15)

where the right-hand side term is calculated explicitly. In incompressible SPH [8,9], the
left-hand side of Equation (15) is discretized using the kernel function, W, as

92pi
n+1
2 %

j" i

mj

rj

(pj−pi)
�xj−xi �2

(xj−xi) ·9iW(�xj−xi �) (16)

or in MPS [10] as

92pi
n+1


2d
n0l

%
j" i

(pj−pi)W(�xj−xi �) (17)

The discretized form of Equation (15) is solved to correct the velocity u and position x of
particles

un+1= ũ−Dt9pn+1 (18)

xn+1=xn+
Dt
2

(un+1+un) (19)

where the tilde (� ) denotes a predictor and particle movements are evaluated by a Crank–
Nicolson scheme. From these equations, the relationship between pressure and position is
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xn+1=xn+
Dt
2

(un+ ũ)−
Dt2

2
9pn+1 (20)

This algorithm is deemed to contain problems. The first problem is that, in full-Lagrangian
algorithms, the discretized system of Equation (15) becomes a non-linear system, as dis-
cretization of Laplacian operator depends on the particle position. For example, the dis-
cretized Laplacian operator in incompressible SPH is more exactly expressed as

92pi
n+1
2 %

j" i

mj

rj

(pj
n+1−pi

n+1)
�xj

n+1−xi
n+1�2 (xj

n+1−xi
n+1) ·9iW(�xj

n+1−xi
n+1�) (21)

By considering that the kernel function is generally non-linear with respect to x, it is clear
that Equations (20) and (21) become a non-linear system. It is necessary to solve the system
by using a suitable non-linear system solver, whereas the discretized system of Poisson
equation in Euler approaches becomes a linear system and is solvable by conventional
matrix solvers, such as successive overrelaxation (SOR) and conjugate gradient (CG). This
is the disadvantage of the full-Lagrangian method.

The second problem is the local minimum problem of the particle positions. The original
MPS method satisfies the incompressible condition by keeping the ‘particle number density’
constant, i.e.

fex
−
r

Dt2

�ñ�i−n0

n0 (22)

where n0 is the initial particle density and �n�i denotes the number of particles in a unit
volume. Equation (22) represents the deviation of the particle number density from the
constant value. The particle number density corresponds to the particle position and if the
particle positions are in a local minimum state; the particle would not be able to move
anywhere. Some troubles caused by this local minimum problem will be presented.

Artificial 6iscosity (of 6elocity)
Let us consider a two-dimensional cavity-driven flow in a square cavity, as is shown in
Figure 3, which is one of the popular benchmark problems. We assume the case of no
viscosity. In the case, it is clear that there is no flow in the cavity at any time. When this
problem is solved with the MPS method under the initial condition of uniformly arranged
particles (particles initially have a constant particle number density), the movement of
boundary particles causes a flow in the cavity in spite of no viscosity. At the first time step,
the particles in the moving wall move in Dt×6 distance toward the right-hand side (see
Figure 3). To satisfy the incompressible condition of the MPS method, i.e. the particle
number, density has to be kept constant in the cavity region, e.g. the particles near the
moving wall will move to a certain position that is different from the original position. In
the MPS method, the movement of particles means that they have a velocity. This fact
contradicts the physical behavior of fluid.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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Figure 3. Artificial viscosity effect in square cavity problem.

Dt paradox
When Dt becomes small (of course Dt should be bigger than the significant digits of the
computer used), the time-integral accuracy of the discrete methods, such as FDM and FEM,
is generally improved. However, the MPS method is an exception to this rule.

For example, we consider a two-dimensional thermal driven flow in a square cavity, as is
shown in Figure 4, which is also one of the popular benchmark problems. We assume the case
of a certain viscosity. When we solve this problem with the MPS method using uniformly
arranged particles initially and using a relatively small time step, it causes no flow in the cavity.
The particles near the hot and cold walls receive the buoyancy force by which particles near
a hot wall move upward and particles near a cold wall move downward. However, when the
time step is smaller than a certain threshold, to make the particle number density constant, the
moved particles are forced to move back to the original position. This means that the fluid in
the cavity does not move forever. The reason is that the initial particle position is at the local
minimum, which satisfies the incompressible condition and there is no other local minimum in
the vicinity of the original position.

Discrete position and 6elocity
Two-dimensional flow in a channel shown in Figure 5 is considered here. When we solve this
problem with the MPS method using the initial condition of uniformly arranged particles, the

Figure 4. Dt paradox in thermal cavity problem.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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Figure 5. Discrete position and velocity in a channel flow.

situation occurs in which particles exist only at the grid position, xi. This fact means that the
particle position and velocity take only discrete values. For example, Dt=1 and all the initial
particle velocity is a certain value between Dx/2 and 3×Dx/2. To satisfy the incompressible
condition, the particle position after one time step will be +Dx-shifted, independently of the
initial particle velocity.

One of the reasons for this problem may be the small number of particles. However, in a
complex problem it is possible for these problems to occur. To prevent the above-mentioned
local minimum problems, in the case of using the revised MPS, there is no choice but to adopt
the inconsistent algorithm in which the constant condition of particle number density is not
consistent with the Poisson equation. However, the algorithm causes the drawback in that the
condition for particle number density is not strictly satisfied in each time step. A similar
situation occurs when the methods based on the non-staggered mesh do not always satisfy the
divergence-free condition. The reason is a similar inconsistency of the discretized equations of
pressure gradient and velocity divergence with the discretized Poisson equation.

To prevent the problems that affect the accuracy of the results, we consider the incompress-
ible condition by the conventional Eulerian method based on an automatic Voronoi/Delaunay
tessellation.

3.2. Incompressible algorithm

3.2.1. Basic algorithm. Instead of Equation (13) we use the following governing equation for
the incompressible condition from the Eulerian viewpoint

9 ·u=0 (23)

The basic algorithm to solve Equations (12), (14) and (23) is based on the MAC method
outlined in Figure 6. Equation (12) and the convection terms of Equation (14) are evaluated
by Lagrangian movement of the particles. The other terms are discretized by the FVM based
on the control volumes, which are automatically generated with the Voronoi/Delaunay
tessellation method. Delaunay tessellation is in duality with Voronoi tessellation, and Voronoi
tessellation can be obtained from Delaunay tessellation (see Figure 7).

In this study, we deal with the incompressible condition by the following algorithm. At first,
the considered region is automatically divided into a mesh based on the computing points
using Voronoi/Delaunay tessellation. Based on the mesh with FVM, the Poisson equation

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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Figure 6. MAC-based algorithm.

Figure 7. Voronoi/Delaunay tessellation.

derived from Equation (23) is discretized into a linear system. When the MAC and FVM
methods are combined, the integration of the Poisson equation of pressure over the control
volume becomes the following:

&
(V

9p ·dn=
1
Dt

&
(V

ũ ·dn (24)

where 	(V dn means the integration on a boundary (V. The linear system derived from
Equation (24) is solved by a suitable matrix solver, such as SOR or incomplete Cholesky
conjugate gradient (ICCG).

Equations (12), (14) and (23) in the case of low-Reynolds number flow can be solved with
the control volume of the Voronoi polygon (Figure 8(a) is the example of the cavity flow of

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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Figure 8. Particle velocity by Voronoi-based algorithm; (a) Re=102, (b) Re=103.

Re=102). However, this is difficult in the case of high Re flow because pressure distribution
oscillates in a ‘checkerboard’ manner, as shown in Figure 8(b). The oscillation is caused by the
collocated grid points that define both velocity and pressure at the same position. To solve the
problem with the collocated points, we need to introduce the stabilizing algorithms, which are
studied in the FEM field. To make matters worse, it is not easy to provide the boundary
conditions for variant values, as the velocity is not defined on the boundary.

On the other hand, to stabilize the pressure field, we use the control volume of the Delaunay
triangle instead of the Voronoi polygon for mass conservation, as is shown in Figure 9.
Furthermore, velocity is defined at the vertex points of the triangle and pressure is defined at
the barycenter. The pressure definition point is not common to every time step and appears
only after the triangulation, and so we call it the virtual pressure point (VPP). The arrange-
ment of velocity and pressure is the P1P0-type of FEM and is also similar to the ‘staggered’
mesh in FDM. Such arrangements are known to be able to suppress the oscillation of pressure
field.

Figure 9. Control volume for mass conservation.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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3.2.2. Particle rearrangement algorithm. When particles move according to the fluid behavior,
they gather or scatter at certain points. Therefore, it is necessary to rearrange particles in order
to control the particle density. A simple algorithm restores the particle position at every time
step. The algorithm is efficient because it requires only one tessellation, but is not able to treat
moving boundaries. Another example is to keep the particle number density constant [10,11].
In this study, we introduce a new algorithm using the charged particle model, which balances
by moving the particle by means of the repulsive force of electric charge provided. This
algorithm can be utilized in initial particle distribution and also in adaptive particle
distribution.

In the particle rearrangement procedure, an interpolation algorithm is required. As high-
order interpolation is needed to reduce the error, we adopt the CIVA algorithm. The c-
parameter is given by CCC, i.e. c=1

2. The boundary condition for the derivatives in the normal
direction of the wall surface was computed from the distribution of the scalar value of the
fluid.

3.3. Numerical analyses

In this section, we analyze some two-dimensional benchmark problems to confirm the validity
of our approaches. The problems considered here are a driven flow in a two-dimensional
square cavity, a free surface flow and a fluid flow with moving and complicated boundaries.

3.3.1. Dri6en flow in a two-dimensional square ca6ity. At first, in order to check the accuracy,
we analyze a driven cavity flow in a two-dimensional square cavity, which is one of the most
popular benchmark problems. The number of particles, including boundary particles, is 121. In
this study, time step is chosen to be a tenth of the Courant condition, because it was found
that explicit evaluation of particle movements causes large numerical error in particle methods
[1]. The computation is for Re=102, 103, 104. The above-mentioned charged particle model is
used for particle rearrangement algorithm.

Figure 10 shows the comparison of velocity profile in the center of each axis direction with
the popular benchmark solution [14]. In the case of Re=102, the results agree well with the
benchmark. As Re increases, however, the difference can be observed in the region where the
velocity gradient is large. The main reason is considered to be the small amount of particles.
Therefore, in order to investigate the effect of the number of particles, we performed the
simulation of Re=104 in which the number of particles is changed to 441. The result is shown
in Figure 11. Although the velocity gradients near the walls approach the benchmark solution
by increasing the number of particles, overshooting of the velocity profile remains. The reason
for the overshooting is considered to be the effect of the method on the derivative boundary
condition. Further examination and improvement are required concerning these points.

Figure 12 shows the pressure and particle velocity distribution without utilizing the spatial
derivatives for Re=102 and 104 and Figure 13 shows the detailed velocity distribution
interpolated with CIVA for Re=103. In comparison with Figure 8(b), it can be confirmed that
even in the higher Re case, the oscillation of pressure is well suppressed by the VPP method.
Because the particles are rearranged at every time step by the charged particle model and the
time step is relatively small, we scarcely confirm any particle movements. This is the same
phenomenon as that pointed out in Section 3.1 and the reason is that the particle positions are

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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Figure 10. Comparison of velocity profile (with CIVA interpolation). (a) Horizontal velocity at vertical
center; (b) vertical velocity at horizontal center.

Figure 11. Effect of the variation in particle number (Re=104). (a) Vertical velocity at horizontal center;
(b) horizontal velocity at vertical center.

at the local minimum. Thus, we executed a simulation of Re=103 without particle rearrange-
ment. The result is shown in Figure 14, which indicates that the particles move according to
the fluid flow and the movement reproduces well the fluid behavior. However, without particle
rearrangement, some particles gather or scatter at certain points or are captured by the wall.
Therefore, it is necessary to rearrange or rezone particles in order to control the particle
density at a suitable time.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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Figure 12. Particle velocity by Delaunay-based algorithm with VPP (left: Re=102, right: Re=104).

Figure 13. CIVA interpolated velocity field (Re=103).

Figure 14. Tracing particles without rearrangement (Re=103).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424
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3.3.2. Free surface flow. The next computation is for an oscillating fluid flow with free surface
in the case of no viscosity (Re=� in Equation (14)). Initial conditions are that the free
surface height is y(x)=1+0.1 sin p(x−0.5) and the fluid is quiescent (Figure 15). The
condition for free surface is given by pressure at the surface equal to 0 and slip condition for
velocities in the direction parallel to the surface. In this calculation, we do not use the charged
particle model, but suppose that particles can only be movable vertically and fixed
horizontally.

The time histories of wall-surface water levels are shown in Figure 16. The result based on
FDM–VOF using a 100×150 uniform mesh was also included for comparison. Although
calculation points are few for the CIVA–particle method, the results are in good agreement.
As there is no viscosity in this case, the oscillating period is analytically calculable with the
velocity potential method. Thus, we compare the oscillating period with the three methods as

Figure 15. Free surface sloshing problem and the initial condition.

Figure 16. Time history of surface level for left and right wall. (a) FDM–VOF (100×150 grid points);
(b) CIVA–particle (225 particles).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 403–424



MESH-FREE FLOW SIMULATIONS: II 419

is shown in Table II. As the velocity potential method is based on a linear theory, the period
by the velocity potential method is slightly different from the results by the FDM–VOF or the
CIVA–particle method. The period by the CIVA–particle method with few calculation points
agrees well with the result by the FDM–VOF method with fine mesh. Flow pattern and
pressure distribution at the times A and B in Figure 16 are shown in Figure 17. The behaviors
of free surface flow are well simulated.

3.3.3. Example of computation of fluid flow with mo6ing and complicated boundaries. The last
computation is an example of simulation of fluid flow with moving boundaries in complex
geometries, as shown in Figure 18. The problem considered is a flow in a glasses-like geometry
having rotating wings. The spacing of particles is also kept constant by using the above-
mentioned charged particle model.

Table II. Comparison of sloshing frequency.

FDM–VOFVector CIVA–particle
potential

0.882 0.869 0.862Frequency

Figure 17. Flow vector and pressure distribution. (a) FDM–VOF (left: at time A, right: at time B); (b)
CIVA–particle (left: at time A, right: at time B).
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Figure 18. Particle velocity of a flow around rotating wings (Re=103). (a) Initial condition; (b) steady
state.

The initial condition and the computed result are indicated in Figure 18. We can confirm
that there exists a secondary rotating flow in the right-hand side region, which is driven by
the rotating flow around the wings in the left-hand side region. Thus, with the CIVA–
particle method, we can treat flexibly a flow with complicated boundaries and moving
boundaries.

4. CONCLUSION

Regarding the new interpolation algorithm, CIVA, the method of determining the c-
parameter in two and three dimensions using CCC was considered. A verification of the
accuracy and comparison with the other high-order methods, such as the third-order up-
wind scheme, were also performed with a three-dimensional passive scalar advection prob-
lem. Consequently, it has been clarified from the results that the CIVA method with CCC
can achieve the medium accuracy between the third-order upwind and the fourth-order
central difference schemes. Next, an incompressible fluid simulation was considered. As the
incompressible condition based on full-Lagrangian approaches causes problems, the condi-
tion in this study was satisfied by the conventional Eulerian method. Numerical analyses
for some benchmark problems were executed with a new incompressible fluid simulation
method based on the CIVA–particle method, and from the results we confirmed that the
method achieves high accuracy and has high flexibility, even for high-Reynolds number
flow, complicated geometries, moving boundaries and free surface.
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APPENDIX A. RELATION BETWEEN CIVA-PARTICLE METHOD AND ALE
METHOD

Here, we consider the relation of the LRI method in a CIVA–particle method and the ALE
method. As shown in Figure 19, co-ordinate systems are established as space (fixed) co-
ordinates: x (x, y), material co-ordinates: X (X, Y) and ALE (moving) co-ordinates: x (x, j).

An advection equation is expressed as follows by the above-mentioned co-ordinates:

Fixed co-ordinates

(f
(t

)
x

+ (u·9)f=0 (25)

Material co-ordinates

(f
(t

)
X

=0 (26)

ALE co-ordinates

(f
(t

)
x

+ (c·9)f=0 (27)

where c=u−w and w is the velocity of co-ordinate movement in ALE co-ordinates.

A.1. LRI method

Each phase of the LRI method in the CIVA–particle method will perform the following
evaluation (see Figure 20):

Figure 19. Co-ordinate system.
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Figure 20. Co-ordinates in LRI.

(C.1) Lagrangian phase: Equation (26) is evaluated and a time step is set forward to n�n+1

Xn+1=Xn+Dtu=xn+Dtu

f(tn+1, Xn+1)= f(tn, Xn) (28)

(C.2) Rearrangement phase: calculation points are rearranged to determine xn+1 at the
(n+1)th time step

xn+1=xn+Dtw=Xn+1−Dtc (29)

(C.3) Interpolation phase: in order to determine f at xn+1 and at tn+1, interpolation is
processed

f(tn+1, xn+1)= f(tn+1, Xn+1−Dtc) (30)

By using Equation (28), Equation (30) is transformed to

f(tn+1, xn+1)= f(tn, Xn−Dtc) (31)

When Xn=xn is taken into consideration, an LRI method evaluates the following equations by
the procedure (C.1)–(C.3):

f(tn+1, xn+1)= f(tn, xn−Dtc) (32)

A.2. ALE method

In the case of explicitly evaluating the advection, the ALE method consists of the following
two phases [5]:

(A.1) Lagrangian phase
(A.2) Rezoning or convective flux calculation phase
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Figure 21. Co-ordinates in ALE.

The ALE method advances the time step by the fractional time step method and evaluates
the following (see Figure 21):

(A.1) Lagrangian phase: while Equation (26) is evaluated, the time step is not completely
advanced but is taken as the value in mid-phase L

xL=xn+Dtu

f(tL, XL)= f(tn, Xn) (33)

(A.2) Rezoning phase: perform the rezoning of mesh and decide the position xn+1 of the
calculation point at time (n+1)

xn+1=xn+Dtw=xL−Dtc (34)

Equation (27) is evaluated in order to determine the value of the calculation point at (n+1)th
time (convection flux evaluation). This evaluation is generally done by discretizing Equation
(27), but here we evaluate Equation (27) by the upwind method. In this case, the following
equations are evaluated in consideration of the movement of co-ordinates:

f(tn+1, xn+1)= f(tL, xL−Dtc) (35)

Since the following equation holds:

f(tL, xL)= f(tL, XL) (36)

Equation (35) can be deformed as follows in consideration of Equation (33):

f(tn+1, xn+1)= f(tL, XL−Dtc)= f(tn, Xn−Dtc) (37)

Therefore, if xn+1=xn+1 and Xn=xn are taken into consideration when convection flux is
evaluated by the upwind method, the phase of (A.1) and (A.2) evaluates the following
equations:
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f(tn+1, xn+1)= f(tn, xn−Dtc) (38)

From Equations (32) and (38), it is confirmed that the LRI method is equivalent to the ALE
method, which evaluates the convection flux in the rezoning phase by the upwind method.
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